Spatial intuitionistic fuzzy set based image segmentation
نویسندگان
چکیده
Introduction Clustering is one of the unsupervised segmentation methods for the partitioning of image into different parts having some homogeneous features. Uncertain information is presented in medical images due impreciseness and fuzziness of pixels and edges [1]. However, due to the uncertainty and complexity of images, clustering is commonly used to segment the images into different clusters having similar pixel values [1-6].
منابع مشابه
Multimodal medical image fusion based on Yager’s intuitionistic fuzzy sets
The objective of image fusion for medical images is to combine multiple images obtained from various sources into a single image suitable for better diagnosis. Most of the state-of-the-art image fusing technique is based on nonfuzzy sets, and the fused image so obtained lags with complementary information. Intuitionistic fuzzy sets (IFS) are determined to be more suitable for civilian, and medi...
متن کاملDecision making in medical investigations using new divergence measures for intuitionistic fuzzy sets
In recent times, intuitionistic fuzzy sets introduced by Atanassov has been one of the most powerful and flexible approaches for dealing with complex and uncertain situations of real world. In particular, the concept of divergence between intuitionistic fuzzy sets is important since it has applications in various areas such as image segmentation, decision making, medical diagnosis, pattern reco...
متن کاملFuzzy Clustering Algorithms for Effective Medical Image Segmentation
Medical image segmentation demands a segmentation algorithm which works against noise. The most popular algorithm used in image segmentation is Fuzzy C-Means clustering. It uses only intensity values for clustering which makes it highly sensitive to noise. The comparison of the three fundamental image segmentation methods based on fuzzy logic namely Fuzzy C-Means (FCM), Intuitionistic Fuzzy C-M...
متن کاملA novel segmentation method for uneven lighting image with noise injection based on non-local spatial information and intuitionistic fuzzy entropy
Local thresholding methods for uneven lighting image segmentation always have the limitations that they are very sensitive to noise injection and that the performance relies largely upon the choice of the initial window size. This paper proposes a novel algorithm for segmenting uneven lighting images with strong noise injection based on non-local spatial information and intuitionistic fuzzy the...
متن کاملColour Image Segmentation using A-IFSs
The problem of segmentation is an important research field and often a critical and decisive preprocessing step for many image processing applications. During the past years, the use of colour images instead of gray images is growing fast in many research areas. Moreover, the use of segmentation over colour images is advised when additional colour information conveyed is necessary to further di...
متن کامل